歡迎訪問考研秘籍考研網!    研究生招生信息網    考博真題下載    考研真題下載    全站文章索引
文章搜索   高級搜索   

 您現在的位置: 考研秘籍考研網 >> 文章中心 >> 考研數學 >> 正文  歷年考研數學真題高等數學部分考查重點

新聞資訊
普通文章 上海市50家單位網上接受咨詢和報名
普通文章 北京大學生“就業之家”研究生專場招聘場面火爆
普通文章 廈大女研究生被殺案終審判決 兇手被判死刑
普通文章 廣東八校網上試點考研報名將開始
普通文章 2004年碩士北京招生單位報名點一覽
普通文章 洛陽高新區21名碩士研究生被聘為中層領導
普通文章 浙江省碩士研究生報名從下周一開始
普通文章 2004年上??紖^網上報名時間安排表
普通文章 廣東:研究生入學考試2003年起重大調整
普通文章 2004年全國研招上??紖^報名點一覽表
調劑信息
普通文章 寧夏大學04年碩士研究生調劑信息
普通文章 大連鐵道學院04年碩士接收調劑生源基本原則
普通文章 吉林大學建設工程學院04年研究生調劑信息
普通文章 溫州師范學院(溫州大學籌)05研究生調劑信息
普通文章 佳木斯大學04年考研調劑信息
普通文章 沈陽建筑工程學院04年研究生調劑信息
普通文章 天津師范大學政治與行政學院05年碩士調劑需求
普通文章 第二志愿考研調劑程序答疑
普通文章 上海大學04年研究生招收統考生調劑信息
普通文章 廣西大學04年碩士研究生調劑信息

友情提示:本站提供全國400多所高等院校招收碩士、博士研究生入學考試歷年考研真題、考博真題、答案,部分學校更新至2012年,2013年;均提供收費下載。 下載流程: 考研真題 點擊“考研試卷””下載; 考博真題 點擊“考博試卷庫” 下載 

高等數學歷來是考研的考查重點,往往大題、難題都會出自在這一部分,在最后復習階段,希望大家能仔細的研究一下歷年考研數學真題的出現過的內容。

一、函數、極限與連續

1.求分段函數的復合函數;

2.求極限或已知極限確定原式中的常數;

3.討論函數的連續性,判斷間斷點的類型;

4.無窮小階的比較;

5.討論連續函數在給定區間上零點的個數,或確定方程在給定區間上有無實根。

二、一元函數微分學

1.求給定函數的導數與微分(包括高階導數),隱函數和由參數方程所確定的函數求導,特別是分段函數和帶有絕對值的函數可導性的討論;

2.利用洛比達法則求不定式極限;

3.討論函數極值,方程的根,證明函數不等式;

4.利用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理證明有關命題,如證明在開區間內至少存在一點滿足……,此類問題證明經常需要構造輔助函數;

5.幾何、物理、經濟等方面的最大值、最小值應用問題,解這類問題,主要是確定目標函數和約束條件,判定所討論區間;

6.利用導數研究函數性態和描繪函數圖形,求曲線漸近線。

三、一元函數積分學

1.計算題:計算不定積分、定積分及廣義積分;

2.關于變上限積分的題:如求導、求極限等;

3.有關積分中值定理和積分性質的證明題;

4.定積分應用題:計算面積,旋轉體體積,平面曲線弧長,旋轉面面積,壓力,引力,變力作功等;

5.綜合性試題。

 四、向量代數和空間解析幾何

1.計算題:求向量的數量積,向量積及混合積;

2.求直線方程,平面方程;

3.判定平面與直線間平行、垂直的關系,求夾角;

4.建立旋轉面的方程;

5.與多元函數微分學在幾何上的應用或與線性代數相關聯的題目。

 五、多元函數的微分學

1.判定一個二元函數在一點是否連續,偏導數是否存在、是否可微,偏導數是否連續;

2.求多元函數(特別是含有抽象函數)的一階、二階偏導數,求隱函數的一階、二階偏導數;

3.求二元、三元函數的方向導數和梯度;

4.求曲面的切平面和法線,求空間曲線的切線與法平面,該類型題是多元函數的微分學與前面向量代數與空間解析幾何的綜合題,應結合起來復習;

5.多元函數的極值或條件極值在幾何、物理與經濟上的應用題;求一個二元連續函數在一個有界平面區域上的最大值和最小值。這部分應用題多要用到其他領域的知識,考生在復習時要引起注意。

六、多元函數的積分學

1.二重、三重積分在各種坐標下的計算,累次積分交換次序;

2.第一型曲線積分、曲面積分計算;

3.第二型(對坐標)曲線積分的計算,格林公式,斯托克斯公式及其應用;

4.第二型(對坐標)曲面積分的計算,高斯公式及其應用;

5.梯度、散度、旋度的綜合計算;

6.重積分,線面積分應用;求面積,體積,重量,重心,引力,變力作功等。數學一考生對這部分內容和題型要引起足夠的重視。

七、無窮級數

1.判定數項級數的收斂、發散、絕對收斂、條件收斂;

2.求冪級數的收斂半徑,收斂域;

3.求冪級數的和函數或求數項級數的和;

4.將函數展開為冪級數(包括寫出收斂域);

5.將函數展開為傅立葉級數,或已給出傅立葉級數,要確定其在某點的和(通常要用狄里克雷定理);

6.綜合證明題。

 八、微分方程

1.求典型類型的一階微分方程的通解或特解:這類問題首先是判別方程類型,當然,有些方程不直接屬于我們學過的類型,此時常用的方法是將x與y對調或作適當的變量代換,把原方程化為我們學過的類型;

2.求解可降階方程;

3.求線性常系數齊次和非齊次方程的特解或通解;

4.根據實際問題或給定的條件建立微分方程并求解;

5.綜合題,常見的是以下內容的綜合:變上限定積分,變積分域的重積分,線積分與路徑無關,全微分的充要條件,偏導數等。

免責聲明:本文系轉載自網絡,如有侵犯,請聯系我們立即刪除,另:本文僅代表作者個人觀點,與本網站無關。其原創性以及文中陳述文字和內容未經本站證實,對本文以及其中全部或者部分內容、文字的真實性、完整性、及時性本站不作任何保證或承諾,請讀者僅作參考,并請自行核實相關內容。

  • 上一篇文章:

  • 下一篇文章:
  • 考博咨詢QQ 3455265070 點擊這里給我發消息 考研咨詢 QQ 3455265070 點擊這里給我發消息 郵箱: 3455265070@qq.com
    公司名稱:昆山創酷信息科技有限公司 版權所有
    考研秘籍網 版權所有 © kaoyanmiji.com All Rights Reserved
    聲明:本網站尊重并保護知識產權,根據《信息網絡傳播權保護條例》,如果我們轉載或引用的作品侵犯了您的權利,請通知我們,我們會及時刪除!
    日本免费人成网ww555在线