友情提示:本站提供全國400多所高等院校招收碩士、博士研究生入學考試歷年考研真題、考博真題、答案,部分學校更新至2012年,2013年;均提供收費下載。 下載流程: 考研真題 點擊“考研試卷””下載; 考博真題 點擊“考博試卷庫” 下載
2018年北京師范大學招收碩士研究生入學考試大綱
線性代數
一、行列式
考試內容
行列式的概念和基本性質行列式按行(列)展開定理
考試要求
1.了解行列式的概念,掌握行列式的性質
2.會應用行列式的性質和行列式按行(列)展開定理計算行列式
二、矩陣
考試內容
矩陣的概念矩陣的線性運算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運算
考試要求
1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質
2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質
3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣
4.理解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法
5.了解分塊矩陣及其運算
三、向量
考試內容
向量的概念向量的線性組合與線性表示向量組的線性相關與線性無關向量組的極大線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量空間及其相關概念維向量空間的基變換和坐標變換過渡矩陣向量的內積線性無關向量組的正交規范化方法規范正交基正交矩陣及其性質
考試要求
1.理解維向量、向量的線性組合與線性表示的概念
2.理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法
3.理解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩
4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系
5.了解維向量空間、子空間、基底、維數、坐標等概念
6.了解基變換和坐標變換公式,會求過渡矩陣
7.了解內積的概念,掌握線性無關向量組正交規范化的施密特(Schmidt)方法
8.了解規范正交基、正交矩陣的概念以及它們的性質
四、線性方程組
考試內容
線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質和解的結構齊次線性方程組的基礎解系和通解解空間非齊次線性方程組的通解
考試要求
l.會用克拉默法則
2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件
3.理解齊次線性方程組的基礎解系、通解及解空間的概念,掌握齊次線性方程組的基礎解系和通解的求法
4.理解非齊次線性方程組解的結構及通解的概念
5.掌握用初等行變換求解線性方程組的方法
五、矩陣的特征值和特征向量
考試內容
矩陣的特征值和特征向量的概念、性質相似變換、相似矩陣的概念及性質矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特征值、特征向量及其相似對角矩陣
考試要求
1.理解矩陣的特征值和特征向量的概念及性質,會求矩陣的特征值和特征向量
2.理解相似矩陣的概念、性質及矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法
3.掌握實對稱矩陣的特征值和特征向量的性質
六、二次型
考試內容
二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標準形和規范形用正交變換和配方法化二次型為標準形二次型及其矩陣的正定性
考試要求
1.掌握二次型及其矩陣表示,了解二次型秩的概念,了解合同變換與合同矩陣的概念,了解二次型的標準形、規范形的概念以及慣性定理
2.掌握用正交變換化二次型為標準形的方法,會用配方法化二次型為標準形
3.理解正定二次型、正定矩陣的概念,并掌握其判別法
免責聲明:本文系轉載自網絡,如有侵犯,請聯系我們立即刪除,另:本文僅代表作者個人觀點,與本網站無關。其原創性以及文中陳述文字和內容未經本站證實,對本文以及其中全部或者部分內容、文字的真實性、完整性、及時性本站不作任何保證或承諾,請讀者僅作參考,并請自行核實相關內容。
|