歡迎訪問考研秘籍考研網!    研究生招生信息網    考博真題下載    考研真題下載    全站文章索引
文章搜索   高級搜索   

 您現在的位置: 考研秘籍考研網 >> 文章中心 >> 專業課 >> 正文  2018年湖南師范大學723數學分析考研大綱

新聞資訊
普通文章 上海市50家單位網上接受咨詢和報名
普通文章 北京大學生“就業之家”研究生專場招聘場面火爆
普通文章 廈大女研究生被殺案終審判決 兇手被判死刑
普通文章 廣東八校網上試點考研報名將開始
普通文章 2004年碩士北京招生單位報名點一覽
普通文章 洛陽高新區21名碩士研究生被聘為中層領導
普通文章 浙江省碩士研究生報名從下周一開始
普通文章 2004年上??紖^網上報名時間安排表
普通文章 廣東:研究生入學考試2003年起重大調整
普通文章 2004年全國研招上海考區報名點一覽表
調劑信息
普通文章 寧夏大學04年碩士研究生調劑信息
普通文章 大連鐵道學院04年碩士接收調劑生源基本原則
普通文章 吉林大學建設工程學院04年研究生調劑信息
普通文章 溫州師范學院(溫州大學籌)05研究生調劑信息
普通文章 佳木斯大學04年考研調劑信息
普通文章 沈陽建筑工程學院04年研究生調劑信息
普通文章 天津師范大學政治與行政學院05年碩士調劑需求
普通文章 第二志愿考研調劑程序答疑
普通文章 上海大學04年研究生招收統考生調劑信息
普通文章 廣西大學04年碩士研究生調劑信息

友情提示:本站提供全國400多所高等院校招收碩士、博士研究生入學考試歷年考研真題、考博真題、答案,部分學校更新至2012年,2013年;均提供收費下載。 下載流程: 考研真題 點擊“考研試卷””下載; 考博真題 點擊“考博試卷庫” 下載 

湖南師范大學碩士研究生入學考試自命題考試大綱
考試科目代碼:723 考試科目名稱:數學分析
一、試卷結構
1) 試卷成績及考試時間
本試卷滿分為 150 分,考試時間為 180 分鐘。
2)答題方式:閉卷、筆試
3)試卷內容結構
數學分析
4)題型結構
a: 填空題,10 小題,每小題 7 分,共 70 分
b: 討論題,3 小題,每小題 10 分,共 30 分
c: 解答題(包括證明題),5 小題,每小題 10 分,共 50 分
二、考試內容與考試要求
1、極限論
考試內容
① 各種極限的計算; ② 單調有界收斂原理、致密性定理、確界原理、
Cauchy 收斂原理等實數基本理論的靈活應用; ③ 連續函數特別是閉區間上連
續函數性質的運用; ④ 極限定義的熟練掌握等.
考試要求
(1)能熟練計算各種極限,包括單變量和多變量情形.
(2)能熟練利用六個實數基本定理尤其是單調有界收斂原理、致密性定理、
確界原理、Cauchy 收斂原理進行各種理論證明.
(3)能熟練掌握單變量連續函數特別是閉區間上連續函數的各種性質,并能
利用這些性質進行計算和證明;掌握多變量連續函數的性質尤其是有界閉域上連
續函數的性質,能利用這些性質進行計算和證明.
(4)熟練掌握各種極限的定義,并能用邏輯術語進行理論證明.
2、單變量微分學
考試內容
① 微分中值定理(包括 Roll 定理、Lagrange 中值定理、Cauchy 中值定理等)
的靈活運用(包括單調性討論、極值的求取、凸凹性問題、等式和不等式的證
明等); ② Talor 公式的靈活運用(包括用 Lagrange 余項形式證不等式、用
Peano 余項形式估計階以及求極限等);③ 各種形式導數的計算; ④ 導數的
定義和運用等.
考試要求
(1)熟練掌握微分中值定理,包括 Roll 定理、Lagrange 中值定理、Cauchy
中值定理的條件和結論,能熟練利用這些定理進行理論證明或計算,包括函數單
調性討論、極值的求取、凸凹性問題的討論、等式和不等式的證明等.
(2) 熟練掌握 Talor 公式的條件和結論,并能做到靈活運用,尤其是利用
Lagrange 余項形式證不等式、Peano 余項形式估計階以及求極限等.
(3)熟練掌握復合函數導數的計算和高階導數的計算.
(4)熟練掌握導數的定義和性質,能用邏輯語言進行理論證明,熟練掌握
利用導數定義進行證明或計算.
3、單變量積分學
考試內容
① 各種不定積分和定積分的熟練計算,尤其是計算中的處理技巧; ② 廣義
積分的計算和斂散性判別; ③ 定積分的定義和性質的靈活運用等.
考試要求
(1)熟練計算各種不定積分、定積分,熟練掌握湊微分法、換元法、分部
積分法以及常用的計算技巧,熟練掌握奇偶函數、周期函數的積分特點.
(2)熟練掌握廣義積分的計算,熟練掌握區間無限型、函數無界型以及混
合型廣義積分的斂散性判別,并能進行理論證明.
(3)熟練掌握定積分的定義,能利用定積分的定義進行極限的計算,熟練
掌握定積分的性質,并能利用這些性質進行理論證明,掌握常用可積函數類.
4、級數論
考試內容
① 各種數項級數尤其是正項級數的斂散性判別;② 數項級數的性質
③ 函數列和函數項級數的一致收斂性判別,給定函數 Fourier 級數的展開和特殊
點的收斂性;④函數列和函數項級數一致收斂性質的靈活運用 ;⑤冪級數的收
斂性和展開等知識的熟練掌握.
考試要求
(1)熟練掌握級數的斂散性判別,尤其是正項級數和交錯級數斂散性判別.
(2)掌握數項級數的一些常用性質,尤其是絕對收斂級數與條件收斂結束
的常規性質.
(3)熟練掌握函數列和函數項級數一致收斂性的判別,尤其是用定義、優
級數判別法、Abel 判別法、Dirichlet 判別法判別函數項級數的一致收斂性,熟練
掌握給定函數的 Fourier 展開,能給出 Fourier 級數在特殊點的收斂性.
(4)熟練掌握函數列和函數項級數一致收斂性的性質運用,包括連續性、
可積性和可微性,能利用這些性質進行理論證明.
(5)熟練掌握冪級數收斂區間的求法,熟練掌握常規函數的冪級數展開,
并掌握一些特殊冪級數和函數的求法.
5、多變量微分學和參變量積分
考試內容
① 可微的定義; ② 求復合函數以及隱函數的偏導數; ③ 多元函數極值
理論; ④ 參變量積分的一致收斂性判別; ⑤ 參變量積分的計算; ⑥ 參變
量積分一致收斂性質的運用等.
考試要求
(1)掌握多元函數可微的定義,能熟練利用定義證明某些常規函數的可微
性,掌握多元函數可微、連續、可求偏導之間的關系.
(2)熟練掌握多元函數復合函數求偏導數尤其是高階偏導數,掌握方程或
方程組確定的隱函數偏導的計算.
(3)熟練掌握多元函數極值的計算,并能計算有界閉域上連續函數的最值..
(4)熟練掌握含參變量廣義積分一致收斂性的判別.
(5)熟練掌握含參變量常義積分和廣義積分的計算.
(6)熟練掌握含參變量常義積分和廣義積分的連續性、可積性和可導性,
并能利用這些性質進行計算和證明..
6、多元積分學
考試內容
①二重積分、三重積分的計算; ② 格林公式、高斯公式的靈活運用;
③兩類曲線積分、兩類曲面積分的計算;④ 各種積分之間的相互關系等
考試要求
(1)熟練掌握二重積分、三重積分的計算,熟練掌握降維、換元法,尤其
是極坐標、球坐標變換.
(2)熟練掌握 Gree 公式、Gauss 公式的條件和結論.
(3)熟練掌握第一類和第二類曲線積分和曲面積分的計算.
(4)掌握平面曲線積分與路徑無關的條件,會求二元函數全微分的原函數,
熟練掌握利用 Gree 公式求第二類曲線積分、利用 Gauss 公式求第二類曲面積分、
利用 Stokes 公式求空間第二類曲線積分..
三、參考書目
[1] 復旦大學數學系編. 數學分析. 高等教育出版社, 1979
[2] 華東師范大學數學系編. 數學分析 高等教育出版社, 2001
[3] 張學軍、王仙桃等編. 數學分析選講. 湖南師范大學出版社,2012

免責聲明:本文系轉載自網絡,如有侵犯,請聯系我們立即刪除,另:本文僅代表作者個人觀點,與本網站無關。其原創性以及文中陳述文字和內容未經本站證實,對本文以及其中全部或者部分內容、文字的真實性、完整性、及時性本站不作任何保證或承諾,請讀者僅作參考,并請自行核實相關內容。

  • 上一篇文章:

  • 下一篇文章:
  • 考博咨詢QQ 3455265070 點擊這里給我發消息 考研咨詢 QQ 3455265070 點擊這里給我發消息 郵箱: 3455265070@qq.com
    公司名稱:昆山創酷信息科技有限公司 版權所有
    考研秘籍網 版權所有 © kaoyanmiji.com All Rights Reserved
    聲明:本網站尊重并保護知識產權,根據《信息網絡傳播權保護條例》,如果我們轉載或引用的作品侵犯了您的權利,請通知我們,我們會及時刪除!
    日本免费人成网ww555在线